Trade-offs in the contrastive hierarchy: Voicing versus continuancy in Slavic

B. Elan Dresher Daniel Currie Hall
University of Toronto Saint Mary's University

NELS 46 • Concordia University • October 2015

Outline

- Our approach to phonological representations:

The Successive Division Algorithm (SDA)

- Contrast and phonological activity:

What does the SDA actually predict?

- Applying the SDA to Russian
- Revising Halle's hierarchy
- Consequences of the change
- Evidence elsewhere in Slavic

Our approach to phonological representations

Two components of a theory of phonemic contrast:

Our approach to phonological representations

Two components of a theory of phonemic contrast:
(1) The Contrastivist Hypothesis: Only contrastive features are phonologically active.

Our approach to phonological representations

Two components of a theory of phonemic contrast:
(1) The Contrastivist Hypothesis: Only contrastive features are phonologically active.
(2) The Successive Division Algorithm: Contrastive features are assigned by recursively dividing the underlying inventory.

The Successive Division Algorithm

The Successive Division Algorithm

a. Begin with no feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.

The Successive Division Algorithm

a. Begin with no feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.

$$
\begin{aligned}
& \text { V } \\
& \partial
\end{aligned}
$$

The Successive Division Algorithm

a. Begin with no feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.
b. If the set is found to consist of more than one contrasting member, select a feature and divide the set into as many subsets as the feature allows for.

$$
\begin{aligned}
& \text { V } \\
& \partial
\end{aligned}
$$

The Successive Division Algorithm

a. Begin with no feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.
b. If the set is found to consist of more than one contrasting member, select a feature and divide the set into as many subsets as the feature allows for.

The Successive Division Algorithm

a. Begin with no feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.
b. If the set is found to consist of more than one contrasting member, select a feature and divide the set into as many subsets as the feature allows for.
c. Repeat step (b) in each subset: keep dividing up the inventory into sets, applying successive features in turn, until every set has only one member.

The Successive Division Algorithm

a. Begin with no feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.
b. If the set is found to consist of more than one contrasting member, select a feature and divide the set into as many subsets as the feature allows for.
c. Repeat step (b) in each subset: keep dividing up the inventory into sets, applying successive features in turn, until every set has only one member.

Specifications depend on hierarchical order

Two possible ways of dividing the vowel inventory /i u a/ with [\pm high] and [\pm back]

Specifications depend on hierarchical order

Two possible ways of dividing the vowel inventory /i u a/ with [土high] and [\pm back]:
high > back back >> high

Specifications depend on hierarchical order

Two possible ways of dividing the vowel inventory /i u a/ with [\pm high] and [\pm back]:
high > back back >> high
V V

Specifications depend on hierarchical order

Two possible ways of dividing the vowel inventory /i u a/ with [\pm high] and [\pm back]:
high > back back > high

Specifications depend on hierarchical order

Two possible ways of dividing the vowel inventory /i u a/ with [\pm high] and [\pm back]:

back >> high

Specifications depend on hierarchical order

Two possible ways of dividing the vowel inventory /i u a/ with [\pm high] and [\pm back]:

back >> high

$$
\begin{array}{llll}
& \mathrm{i} & \mathrm{u} & \mathrm{a} \\
\hline \text { high } & + & + & - \\
\text { back } & - & + &
\end{array}
$$

Specifications depend on hierarchical order

Two possible ways of dividing the vowel inventory /i u a/ with [\pm high] and [\pm back]:

back >> high

	i	u	a
high	+	+	-
back	-	+	\varnothing

Contrast and phonological activity

- The Contrastivist Hypothesis: Only contrastive features are active in the phonology.

Contrast and phonological activity

- The Contrastivist Hypothesis: Only contrastive features are active in the phonology.
- How do we know which features are contrastive? The SDA.

Contrast and phonological activity

- The Contrastivist Hypothesis: Only contrastive features are active in the phonology.
- How do we know which features are contrastive? The SDA.
- But if the order of features can vary, how do we know what the right hierarchy is for any given language?

Contrast and phonological activity

- The Contrastivist Hypothesis: Only contrastive features are active in the phonology.
- How do we know which features are contrastive? The SDA.
- But if the order of features can vary, how do we know what the right hierarchy is for any given language?
- If we observe that a feature is active, then by hypothesis it must be contrastive.

Contrast and phonological activity

- The Contrastivist Hypothesis: Only contrastive features are active in the phonology.
- How do we know which features are contrastive? The SDA.
- But if the order of features can vary, how do we know what the right hierarchy is for any given language?
- If we observe that a feature is active, then by hypothesis it must be contrastive.
- So every active feature must be high enough in the hierarchy to be specified on the relevant segments.

Contrast and phonological activity

- The Contrastivist Hypothesis: Only contrastive features are active in the phonology.
- How do we know which features are contrastive? The SDA.
- But if the order of features can vary, how do we know what the right hierarchy is for any given language?
- If we observe that a feature is active, then by hypothesis it must be contrastive.
- So every active feature must be high enough in the hierarchy to be specified on the relevant segments.
- Is this circular? (various reviewers, passim)

Contrast and phonological activity

- The Contrastivist Hypothesis: Only contrastive features are active in the phonology.
- How do we know which features are contrastive? The SDA.
- But if the order of features can vary, how do we know what the right hierarchy is for any given language?
- If we observe that a feature is active, then by hypothesis it must be contrastive.
- So every active feature must be high enough in the hierarchy to be specified on the relevant segments.
- Is this circular? (various reviewers, passim)

No.

Contrast and phonological activity

- The Contrastivist Hypothesis: Only contrastive features are active in the phonology.
- How do we know which features are contrastive? The SDA.
- But if the order of features can vary, how do we know what the right hierarchy is for any given language?
- If we observe that a feature is active, then by hypothesis it must be contrastive.
- So every active feature must be high enough in the hierarchy to be specified on the relevant segments.
- Is this circular? (various reviewers, passim)

No.
The SDA and the Contrastivist Hypothesis make testable predictions.

Contrast and phonological activity

Given just a phonological inventory...

Contrast and phonological activity

Given just a phonological inventory...

- We can't predict exactly what the feature specifications are. The SDA is not deterministic.

Contrast and phonological activity

Given just a phonological inventory...

- We can't predict exactly what the feature specifications are. The SDA is not deterministic.
- We can make predictions about how many features can be specified/active.

Contrast and phonological activity

Given just a phonological inventory...

- We can't predict exactly what the feature specifications are. The SDA is not deterministic.
- We can make predictions about how many features can be specified/active.
- We can make predictions about trade-offs between potentially contrastive features.

Contrast and phonological activity

Back to our three-vowel example:

Contrast and phonological activity

Back to our three-vowel example:

Contrast and phonological activity

Back to our three-vowel example:

Contrast and phonological activity

Back to our three-vowel example:

- We can't use more than two features to specify three vowels.

Contrast and phonological activity

Back to our three-vowel example:

- We can't use more than two features to specify three vowels.
- We can have [+high] on /i/, or [+back] on /a/, but not both.

Contrast and phonological activity

Back to our three-vowel example:

- We can't use more than two features to specify three vowels.
- We can have [+high] on /i/, or [+back] on /a/, but not both.
- Our predictions are not [F] will be active and [G] will not,

Contrast and phonological activity

Back to our three-vowel example:

- We can't use more than two features to specify three vowels.
- We can have [+high] on /i/, or [+back] on /a/, but not both.
- Our predictions are not [F] will be active and [G] will not, but rather if [F] is active then [G] cannot be.

The contrastive hierarchy in Russian

- Russian offers an exemplary case of a trade-off in the contrastive hierarchy.

The contrastive hierarchy in Russian

- Russian offers an exemplary case of a trade-off in the contrastive hierarchy.
- Our starting point is Halle (1959).

The contrastive hierarchy in Russian

- Russian offers an exemplary case of a trade-off in the contrastive hierarchy.
- Our starting point is Halle (1959).

■ In SPR, Halle uses a contrastive hierarchy:

The contrastive hierarchy in Russian

- Russian offers an exemplary case of a trade-off in the contrastive hierarchy.
- Our starting point is Halle (1959).

■ In SPR, Halle uses a contrastive hierarchy:

Halle (1959: 34)

"The hierarchy of features seems to provide an explanation for the intuition that not all features are equally central to a given phonological system."

The contrastive hierarchy in Russian

- Russian offers an exemplary case of a trade-off in the contrastive hierarchy.
- Our starting point is Halle (1959).

■ In SPR, Halle uses a contrastive hierarchy, but does not adopt the Contrastivist Hypothesis.

Halle (1959: 63)

"[P rules] specify all features which play no distinctive role in the language but are not randomly distributed."

The contrastive hierarchy in Russian

- Russian offers an exemplary case of a trade-off in the contrastive hierarchy.
- Our starting point is Halle (1959).

■ In SPR, Halle uses a contrastive hierarchy, but does not adopt the Contrastivist Hypothesis.

Halle (1959: 63)

"[P rules] specify all features which play no distinctive role in the language but are not randomly distributed."

- For Halle, the hierarchy primarily serves to simplify underlying representations.

The contrastive hierarchy in Russian

- Russian offers an exemplary case of a trade-off in the contrastive hierarchy.
- Our starting point is Halle (1959).

■ In SPR, Halle uses a contrastive hierarchy, but does not adopt the Contrastivist Hypothesis.

Halle (1959: 63)

"[P rules] specify all features which play no distinctive role in the language but are not randomly distributed."

- For Halle, the hierarchy primarily serves to simplify underlying representations.
- Redundant features are filled in during the derivation, allowing them to be phonologically active.

Voicing assimilation

Voicing assimilation

- Obstruents in clusters undergo regressive assimilation.

Voicing assimilation

- Obstruents in clusters undergo regressive assimilation.
- Assimilation involves both voicing...
/__son:: s-jexat ${ }^{j} \quad$ 'move out'
/__ vLs.: s-prosit ${ }^{\mathrm{j}}$ 'ask (for)'
/__vD.: z-djelat ${ }^{j}$ 'do’

Voicing assimilation

- Obstruents in clusters undergo regressive assimilation.
- Assimilation involves both voicing...
- ...and devoicing.
/__son.: s-jexat ${ }^{j}$ 'move out' iz-lagat ${ }^{j}$ 'set out'
/__ VLS.: s-prosit ${ }^{j}$ 'ask (for)' is-kl'utfat ${ }^{j}$ 'exclude'
/__VD.: z-dielat ${ }^{j}$ 'do' iz-gnat ${ }^{j}$ 'drive out'

Voicing assimilation

- Obstruents in clusters undergo regressive assimilation.
- Assimilation involves both voicing...
- ...and devoicing.

Voicing assimilation

- Obstruents in clusters undergo regressive assimilation.
- Assimilation involves both voicing...
- ...and devoicing.
/__son.: s-jexat ${ }^{j}$ 'move out' iz-lagat ${ }^{j}$ 'set out' CONTRAST
/__vLs.: s-prosit ${ }^{j}$ 'ask (for)' is-kljutfat ${ }^{j}$ 'exclude' voiceless
/__VD.: z-d'elat ${ }^{j}$ 'do' iz-gnat ${ }^{j}$ 'drive out' voIced
- So [\pm voice] is phonologically active on obstruents.

Voicing assimilation

- Obstruents in clusters undergo regressive assimilation.
- Assimilation involves both voicing...
- ...and devoicing.

I__son.: s-jexat ${ }^{j}$ 'move out' iz-lagat ${ }^{j}$ 'set out' CONTRAST
/__VLS.: s-prosit ${ }^{j}$ 'ask (for)' is-kljutfat 'exclude' voiceless
/__vD.: z-d'elat ${ }^{j}$ 'do’ iz-gnat ${ }^{j}$ 'drive out' voIced

- So [\pm voice] is phonologically active on obstruents.
- (And it's not active on sonorants.)

Voicing assimilation: Features

- Most Russian obstruents come in voiced/voiceless pairs, and sonorants are all voiced.

Voicing assimilation: Features

■ Most Russian obstruents come in voiced/voiceless pairs, and sonorants are all voiced.

- So if [\pm sonorant] (or the equivalent) takes scope over [\pm voice], voicing will be specified on obstruents but not on sonorants.

Voicing assimilation: Features

- Most Russian obstruents come in voiced/voiceless pairs, and sonorants are all voiced.
- So if [\pm sonorant] (or the equivalent) takes scope over [\pm voice], voicing will be specified on obstruents but not on sonorants.
- Schematically:

Voicing assimilation: The unpaired obstruents

- For pairs like /t/ and /d/, [\pm voice] must be contrastive.

Voicing assimilation: The unpaired obstruents

- For pairs like /t/ and /d/, [\pm voice] must be contrastive.
- No matter how low [\pm voice] is in the hierarchy, there's no other feature that could distinguish them.

Voicing assimilation: The unpaired obstruents

■ For pairs like /t/ and /d/, [\pm voice] must be contrastive.

- No matter how low [\pm voice] is in the hierarchy, there's no other feature that could distinguish them.
- But Russian also has three unpaired voiceless obstruents.

Voicing assimilation: The unpaired obstruents

- For pairs like /t/ and /d/, [\pm voice] must be contrastive.
- No matter how low [\pm voice] is in the hierarchy, there's no other feature that could distinguish them.
- But Russian also has three unpaired voiceless obstruents.

	LABIAL		DENTAL		(PRE)PALATAL	VELAR	
STOP	p	p^{j}	t	t^{j}		k	k^{j}
	b	b^{j}	d	d^{j}		g	
AFFRICATE			ts		t		
FRICATIVE	f	f^{j}	s	s^{j}	\int	x	
	v	v^{j}	z	z^{j}	3		

Voicing assimilation: The unpaired obstruents

■ For pairs like /t/ and /d/, [\pm voice] must be contrastive.

- No matter how low [\pm voice] is in the hierarchy, there's no other feature that could distinguish them.
- But Russian also has three unpaired voiceless obstruents.

	LABIAL		DENTAL		(PRE)PALATAL	VELAR	
STOP	p	p^{j}	t	t^{j}		k	k^{j}
	b	b^{j}	d	d^{j}		g	
AFFRICATE			ts		t		
FRICATIVE	f	f^{j}	s	s^{j}	\int	x	
	v	v^{j}	z	z^{j}	3		

- These unpaired obstruents were key to Halle's (1957; 1959) argument against the structuralist separation of morphophonemic and allophonic patterns.

Voicing assimilation: The unpaired obstruents

- Unpaired /ts ty x/ undergo regressive assimilatory voicing:

Voicing assimilation: The unpaired obstruents

- Unpaired /ts ty x/ undergo regressive assimilatory voicing:

ot ${ }^{\text {j }}$ ets	'father'
ot ${ }^{\text {j }}$ ch ${ }^{\text {b }}$ l	'father was'
3etf ${ }^{\text {ji }}$	'should one burn?'

Voicing assimilation: The unpaired obstruents

- Unpaired /ts ty x/ undergo regressive assimilatory voicing:

ot ${ }^{\text {j }}$ ets	'father'	mox	'moss'
ot ${ }^{\text {j }}$ ect bil	'father was'	mor bil	'moss was'
3etj ${ }^{\text {jo }}$	'should one burn?'		
zeds bi	'were one to burn'		

(Thus Halle's argument: If processes that produce alternations between phonemes are strictly separate from allophony, then there is no unified account of voicing assimilation.)

Voicing assimilation: The unpaired obstruents

- Unpaired /ts ty x/ undergo regressive assimilatory voicing:

ot ${ }^{\text {j }}$ ets	'father'	mox	'moss'
ot ${ }^{\text {j }}$ eck b ${ }^{\text {l }}$	'father was'	moy bil	'moss was'
zetf lij	'should one burn?'		
zedj bi	'were one to burn'		

- They also trigger regressive assimilatory devoicing:
b^{j} ez oz ${ }^{\text {j }}$ era 'without a lake'
b^{j} es xljeba 'without bread'
b^{j} es tseni 'without price'
b^{j} es tfest ${ }^{j}$ i \quad without honour'

Specifying the unpaired obstruents

- Since /ts t x/ act like other [-voice] obstruents, it would make sense for them to be specified as [-voice].

Specifying the unpaired obstruents

- Since /ts ty x/ act like other [-voice] obstruents, it would make sense for them to be specified as [-voice].
- But this is not what Halle does.

Specifying the unpaired obstruents

- Since /ts $t \mathrm{x}$ / act like other [-voice] obstruents, it would make sense for them to be specified as [-voice].
- But this is not what Halle does.

contrastive hierarchy for [+consonantal] phonemes fron Halle (1959: 46)

Specifying the unpaired obstruents

- Since /ts $t \mathrm{x}$ / act like other [-voice] obstruents, it would make sense for them to be specified as [-voice].
- But this is not what Halle does.

contrastive hierarchy for [+consonantal] phonemes fron Halle (1959: 46)

Specifying the unpaired obstruents

In Halle's hierarchy:

$$
[\pm \text { low tonality }] \gg[\pm \text { continuant }] \gg[\pm \text { voiced }] \gg[\pm \text { sharped }]
$$

Specifying the unpaired obstruents

In Halle's hierarchy:

$$
[\pm \text { low tonality }] \gg[\pm \text { continuant }] \gg[\pm \text { voiced }] \gg[\pm \text { sharped }]
$$

Strident dentals:

Specifying the unpaired obstruents
In Halle's hierarchy:
$[\pm$ low tonality $] \gg[\pm$ continuant $] \gg[\pm$ voiced $] \gg[\pm$ sharped $]$

Strident dentals:

Palatals and velars:

Specifying the unpaired obstruents

In Halle's hierarchy:

$$
[\pm \text { low tonality }] \gg[\pm \text { continuant }] \gg[\pm \text { voiced }] \gg[\pm \text { sharped }]
$$

Strident dentals:

Specifying the unpaired obstruents

In Halle's hierarchy:

$$
[\pm \text { low tonality }] \gg[\pm \text { continuant }] \gg[\pm \text { voiced }] \gg[\pm \text { sharped }]
$$

Strident dentals:

[\pm continuant] cuts off /ts/, /t/f/ and /x/ before [-voiced] can be assigned to them.

Specifying the unpaired obstruents

- For Halle, this is not a problem.

Specifying the unpaired obstruents

- For Halle, this is not a problem.
- The underlying representations of /ts tf x/ are kept simple, and redundant values for [\pm voiced] can be filled in by rule.

Specifying the unpaired obstruents

- For Halle, this is not a problem.
- The underlying representations of /ts $\ddagger \mathrm{x} /$ are kept simple, and redundant values for [\pm voiced] can be filled in by rule.

Rule P 1b Unless followed by an obstruent, /ts/, /f/f, and /x/ are voiceless.

Specifying the unpaired obstruents

- For Halle, this is not a problem.
- The underlying representations of /ts $\ddagger \mathrm{x} /$ are kept simple, and redundant values for [\pm voiced] can be filled in by rule.

Rule P 1b Unless followed by an obstruent, /ts/,/tf/, and /x/ are voiceless.
Rule $\mathbf{P}_{3 \text { a }}$ If an obstruent cluster is followed [...] by a sonorant, then with regard to voicing the cluster conforms to the last segment.

Specifying the unpaired obstruents

- For Halle, this is not a problem.
- The underlying representations of /ts tf x/ are kept simple, and redundant values for [\pm voiced] can be filled in by rule.

Rule P 1b Unless followed by an obstruent, /ts/,/t/f, and /x/ are voiceless.
Rule $\mathbf{P}_{3 \text { a }}$ If an obstruent cluster is followed [...] by a sonorant, then with regard to voicing the cluster conforms to the last segment.
E.g. без хлеба /biez x|jeba/ [bies x|jeba] 'without bread'

Specifying the unpaired obstruents

- For Halle, this is not a problem.
- The underlying representations of /ts tf x/ are kept simple, and redundant values for [\pm voiced] can be filled in by rule.

Rule $\mathbf{P}_{\mathbf{1}}$ b Unless followed by an obstruent, /ts/, / $\mathrm{f} /$, and $/ \mathrm{x} /$ are voiceless.
Rule \mathbf{P}_{3} a If an obstruent cluster is followed [...] by a sonorant, then with regard to voicing the cluster conforms to the last segment.

UNDERLYING
$b^{j} \mathrm{ez}$ x $\left.\right|^{j} \mathrm{eba}$
[\pm voiced] : $\quad+\varnothing$

Specifying the unpaired obstruents

- For Halle, this is not a problem.
- The underlying representations of /ts tf x/ are kept simple, and redundant values for [\pm voiced] can be filled in by rule.

Rule $\mathbf{P}_{\mathbf{1}}$ b Unless followed by an obstruent, /ts/, / $\mathrm{f} /$, and $/ \mathrm{x} /$ are voiceless.
Rule \mathbf{P}_{3} a If an obstruent cluster is followed [...] by a sonorant, then with regard to voicing the cluster conforms to the last segment.

$$
\begin{aligned}
& \text { UNDERLYING RULE P 1B } \\
& b^{\mathrm{j}} \mathrm{ez} \times\left.\right|^{\mathrm{j}} \mathrm{eba} \rightarrow \mathrm{~b}^{\mathrm{j}} \mathrm{ez} \times\left.\right|^{\mathrm{j}} \mathrm{eba}
\end{aligned}
$$

Specifying the unpaired obstruents

- For Halle, this is not a problem.
- The underlying representations of /ts tf x/ are kept simple, and redundant values for [\pm voiced] can be filled in by rule.

Rule $\mathbf{P}_{\mathbf{1}}$ b Unless followed by an obstruent, /ts/, / $\mathrm{f} /$, and $/ \mathrm{x} /$ are voiceless.
Rule \mathbf{P}_{3} a If an obstruent cluster is followed [...] by a sonorant, then with regard to voicing the cluster conforms to the last segment.

$$
\begin{aligned}
& \text { UNDERLYING } \\
& \mathrm{b}^{\mathrm{j}} \mathrm{z} \times \mathrm{I}^{\mathrm{j}} \mathrm{eba} \rightarrow \begin{array}{l}
\text { RULE P 1B } \\
\left.\mathrm{b}^{\mathrm{j}} \mathrm{ezx}\right|^{\mathrm{j}} \mathrm{eba}
\end{array} \rightarrow \begin{array}{l}
\text { RULE P 3A } \\
\mathrm{b}^{\mathrm{j}} \mathrm{es} \mathrm{l}^{\mathrm{j}} \mathrm{eba}
\end{array}
\end{aligned}
$$

$$
[\pm \text { voiced }]: \quad+\varnothing
$$

Specifying the unpaired obstruents

- If we adopt the Contrastivist Hypothesis, then [\pm voiced] must be contrastive on /ts \ddagger x/ in order to be active.

Specifying the unpaired obstruents

- If we adopt the Contrastivist Hypothesis, then [\pm voiced] must be contrastive on /ts $t \sqrt{x}$ / in order to be active.
- /ts tf x/ don't have minimally different voiced counterparts */dz ds $\gamma /$ in the underlying inventory...

Specifying the unpaired obstruents

- If we adopt the Contrastivist Hypothesis, then [\pm voiced] must be contrastive on /ts $t \sqrt{x}$ / in order to be active.
- /ts if x/ don't have minimally different voiced counterparts */dz ds $\gamma /$ in the underlying inventory...
- ...but they contrast with voiced obstruents in general.

Specifying the unpaired obstruents

- If we adopt the Contrastivist Hypothesis, then [\pm voiced] must be contrastive on /ts $t \sqrt{x}$ / in order to be active.
- /ts tf x/ don't have minimally different voiced counterparts */dz dz $\gamma /$ in the underlying inventory...
- ...but they contrast with voiced obstruents in general.
- The flexibility of the SDA allows us to give [\pm voiced] wider scope, so that it is specified on all Russian obstruents.

Specifying the unpaired obstruents

- If we adopt the Contrastivist Hypothesis, then [\pm voiced] must be contrastive on /ts $t \mathrm{f}$ / in order to be active.
- /ts if x/ don't have minimally different voiced counterparts */dz dz $\gamma /$ in the underlying inventory...
- ...but they contrast with voiced obstruents in general.
- The flexibility of the SDA allows us to give [\pm voiced] wider scope, so that it is specified on all Russian obstruents.
- But this doesn't come for free.

Specifying the unpaired obstruents

- If we adopt the Contrastivist Hypothesis, then [\pm voiced] must be contrastive on /ts $t \sqrt{x}$ / in order to be active.
- /ts if x/ don't have minimally different voiced counterparts */dz dz $\gamma /$ in the underlying inventory...
- ...but they contrast with voiced obstruents in general.
- The flexibility of the SDA allows us to give [\pm voiced] wider scope, so that it is specified on all Russian obstruents.
- But this doesn't come for free.
- If [\pm voiced] is promoted in the contrastive hierarchy, something else must be demoted.

Specifying the unpaired obstruents

- If we adopt the Contrastivist Hypothesis, then [\pm voiced] must be contrastive on /ts $t \sqrt{x}$ / in order to be active.
- /ts if x/ don't have minimally different voiced counterparts */ $\not \subset d z \gamma /$ in the underlying inventory...
- ...but they contrast with voiced obstruents in general.
- The flexibility of the SDA allows us to give [\pm voiced] wider scope, so that it is specified on all Russian obstruents.
- But this doesn't come for free.
- If [\pm voiced] is promoted in the contrastive hierarchy, something else must be demoted.
- We predict a trade-off.

Specifying the unpaired obstruents

Revising Halle's hierarchy...

$$
[\pm \text { low tonality }] \gg[\pm \text { continuant }] \gg[\pm \text { voiced }] \gg[\pm \text { sharped }]
$$

Strident dentals:

Palatals and velars:

Specifying the unpaired obstruents

Revising Halle's hierarchy...

$$
[\pm \text { low tonality }] \gg[\pm \text { voiced }] \gg[\pm \text { continuant }] \gg[\pm \text { sharped }]
$$

Strident dentals:
Palatals and velars:

■ ...gives us [-voiced] on /ts tf x/...

Specifying the unpaired obstruents

Revising Halle's hierarchy...

$$
[\pm \text { low tonality }] \gg[\pm \text { voiced }] \gg[\pm \text { continuant }] \gg[\pm \text { sharped }]
$$

Strident dentals:
Palatals and velars:

■ ...gives us [-voiced] on /ts tf x/...

- ...but removes [\pm continuant] from $/ \mathrm{z} z^{\mathrm{j}} 3 \mathrm{~g} /$.

The other unpaired obstruents

- The revised hierarchy shows the gaps in the underlying inventory-*/ $\not \subset d\} \gamma$-in a new light.

The other unpaired obstruents

- The revised hierarchy shows the gaps in the underlying inventory-*/ $\not \subset d z \gamma$-in a new light.
- What's missing from the inventory are not the voiced counterparts to /ts tf x/...

The other unpaired obstruents

- The revised hierarchy shows the gaps in the underlying inventory-*/ $\not \subset d z \gamma$-in a new light.
- What's missing from the inventory are not the voiced counterparts to /ts ty x/...
- ...but the [$-\alpha$ continuant] counterparts to $/ \mathrm{z} \mathrm{z} \mathrm{z}^{\mathrm{j}} 3 \mathrm{~g} /$.

The other unpaired obstruents

- The revised hierarchy shows the gaps in the underlying inventory-*/ $\not \subset d z \gamma$-in a new light.
- What's missing from the inventory are not the voiced counterparts to /ts ty x/...
- ...but the [$-\alpha$ continuant] counterparts to $/ \mathrm{z} \mathrm{z}^{\mathrm{j}} 3 \mathrm{~g} /$.
- We predict that [\pm continuant] is not phonologically active on /z zi 3 g/.

The other unpaired obstruents

- The revised hierarchy shows the gaps in the underlying inventory-*/ $\not \subset d 3 \gamma$-in a new light.
- What's missing from the inventory are not the voiced counterparts to /ts tf x/...
- ...but the [$-\alpha$ continuant] counterparts to $/ \mathrm{z} \mathrm{z}^{\mathrm{j}} 3 \mathrm{~g} /$.
- We predict that [\pm continuant] is not phonologically active on /z z ${ }^{j} 3 \mathrm{~g} /$.
- Minimally, we predict that omitting [\pm continuant] from these segments will not lead to what Nevins (2015) calls an 'Oops, I Need That' problem.

The other unpaired obstruents

- The revised hierarchy shows the gaps in the underlying inventory-*/ $\not \subset d 3 \gamma$-in a new light.
- What's missing from the inventory are not the voiced counterparts to /ts tf x/...
- ...but the [$-\alpha$ continuant] counterparts to $/ \mathrm{z} \mathrm{z}^{\mathrm{j}} 3 \mathrm{~g} /$.
- We predict that [\pm continuant] is not phonologically active on /z z ${ }^{j} 3 \mathrm{~g} /$.
- Minimally, we predict that omitting [\pm continuant] from these segments will not lead to what Nevins (2015) calls an 'Oops, I Need That' problem.
- More than this, though, there seems to be positive evidence for underspecification of [\pm continuant].

The other unpaired obstruents: Variation

- Circumstantially, we note that Russian /g/ can be realized as [γ] or [h] as well as [g].

The other unpaired obstruents: Variation

- Circumstantially, we note that Russian /g/ can be realized as [$\mathrm{\gamma}$] or [h] as well as [g].
- This is dialect variation, so it doesn't necessarily show that the same U.R. surfaces as both stop and continuant in a single grammar.

The other unpaired obstruents: Variation

- Circumstantially, we note that Russian /g/ can be realized as [γ] or [h] as well as [g].
- This is dialect variation, so it doesn't necessarily show that the same U.R. surfaces as both stop and continuant in a single grammar.
■ However, to the extent that different dialects of Russian show similar phonological patterns, we expect their inventories to have the same specifications.

The other unpaired obstruents: Variation

- Circumstantially, we note that Russian /g/ can be realized as [$\mathrm{\gamma}$] or [h] as well as [g].
- This is dialect variation, so it doesn't necessarily show that the same U.R. surfaces as both stop and continuant in a single grammar.
■ However, to the extent that different dialects of Russian show similar phonological patterns, we expect their inventories to have the same specifications.
- If this segment variously shows up as [g] and [$\gamma] /[\mathrm{h}]$, this is consistent with-but does not entail-the idea that it is unspecified for continuancy.

The other unpaired obstruents: Alternations

Some (morpho)phonological evidence:
Alternations resulting from the First Velar Palatalization

The other unpaired obstruents: Alternations

Some (morpho)phonological evidence:
Alternations resulting from the First Velar Palatalization

$$
\text { [+low tonality] } \rightarrow \text { [-low tonality] }
$$

The other unpaired obstruents: Alternations

Some (morpho)phonological evidence:
Alternations resulting from the First Velar Palatalization

	$[+$ low tonality]	\rightarrow [-low tonality]		
$[-$ voiced]	$[+$ continuant $]$	x	\rightarrow	\int

The other unpaired obstruents: Alternations

Some (morpho)phonological evidence:
Alternations resulting from the First Velar Palatalization

		[+low tonality]	\rightarrow	[-low tonality]
[-voiced]	[+continuant]	x	\rightarrow	\int
$[-$ voiced]	[-continuant]	k	\rightarrow	y

The other unpaired obstruents: Alternations

Some (morpho)phonological evidence:
Alternations resulting from the First Velar Palatalization

		[+low tonality]	\rightarrow	[-low tonality]
[-voiced]	[+continuant]	x	\rightarrow	\int
[-voiced]	[-continuant]	k	\rightarrow	t
[+voiced]	\varnothing	g	\rightarrow	3

The other unpaired obstruents: Alternations

Some (morpho)phonological evidence:
Alternations resulting from the First Velar Palatalization

		[+low tonality]	\rightarrow	[-low tonality]
[-voiced]	[+continuant]	x	\rightarrow	l
[-voiced]	[-continuant]	k	\rightarrow	t
[+voiced]	\varnothing	g	\rightarrow	3

Adjectives:

POSITIVE	COMPARATIVE	GLoss
$\mathrm{t}^{\mathrm{j}} \mathrm{ixij}$	$\mathrm{t}^{\mathrm{j} i \mathrm{je}}$	'quiet(er)'
zarkij	zarfe	'hot(ter)'
dorogoj	doroze	'dear(er)'

The other unpaired obstruents: Alternations

Some (morpho)phonological evidence:
Alternations resulting from the First Velar Palatalization

		[+low tonality]	\rightarrow	[-low tonality]
[-voiced]	[+continuant]	x	\rightarrow	\int
[-voiced]	[-continuant]	k	\rightarrow	t
[+voiced]	\varnothing	g	\rightarrow	3

Verbs:

3RD PLURAL	3RD SINGULAR	GLOSS
maxut	majet	'wave(s), wag(s)'
pekut	petfet	'bake(s)'
strigut	strizet	'shear(s)'

The other unpaired obstruents: Alternations

Some (morpho)phonological evidence:
Alternations resulting from the First Velar Palatalization

		[+low tonality]	\rightarrow	[-low tonality]
[-voiced]	[+continuant]	x	\rightarrow	\int
[-voiced]	[-continuant]	k	\rightarrow	f
[+voiced]	\varnothing	g	\rightarrow	3

Denominal adjectives:

NOUN	ADJECTIVE	GLOSS
fferepaxa	tferepafij	'turtle' / 'testudinian'
volk	voltfij	'wolf' / 'lupine'
vrag	vrazij	'enemy' / 'hostile'

The other unpaired obstruents: Alternations

Some (morpho)phonological evidence:
Alternations resulting from the First Velar Palatalization

		[+low tonality]	\rightarrow	[-low tonality]
[-voiced]	[+continuant]	x	\rightarrow	\int
[-voiced]	[-continuant]	k	\rightarrow	f
[+voiced]	\varnothing	g	\rightarrow	3

Denominal adjectives:

NOUN	ADJECTIVE	GLOSS
tferepaxa	tferepaSij	'turtle' / 'testudinian'
volk	voltfij	'wolf' / 'lupine'
vrag	vrazij	'enemy' / 'hostile'

The hierarchy that assigns [-voiced] to /ts tf x/ also correctly identifies $/ \mathrm{g} /$ and $/ 3 /$ as counterparts.

The other unpaired obstruents: Alternations

Some (morpho)phonological evidence:
Alternations resulting from the First Velar Palatalization

The hierarchy that assigns [-voiced] to /ts tf x/ also correctly identifies $/ \mathrm{g} /$ and $/ 3 /$ as counterparts.

The other unpaired obstruents: Alternations

Relics of the Second Palatalization pair velars with dentals:

The other unpaired obstruents: Alternations

Relics of the Second Palatalization pair velars with dentals:

$$
\left[\begin{array}{l}
+ \text { compact } \\
+ \text { low tonality }
\end{array}\right] \sim\left[\begin{array}{l}
\text {-compact } \\
\text {-low tonality }
\end{array}\right]
$$

The other unpaired obstruents: Alternations

Relics of the Second Palatalization pair velars with dentals:

The other unpaired obstruents: Alternations

Relics of the Second Palatalization pair velars with dentals:
$\left.\begin{array}{cccc} & {\left[\begin{array}{l}\text { +compact } \\ \text { +low tonality }\end{array}\right]}\end{array}\right]\left[\begin{array}{l}\text {-compact } \\ \text {-low tonality }\end{array}\right]$

The other unpaired obstruents: Alternations

Relics of the Second Palatalization pair velars with dentals:

	$\left[\begin{array}{l}\text { +compact } \\ \text { +low tonality }\end{array}\right]$	$\sim\left[\begin{array}{l}\text {-compact } \\ \text {-low tonality }\end{array}\right]$	
$[-$ voiced $]$	$[-$ continuant $]$	k	\sim

brjakat ${ }^{j}$ 'to let fall w/ a clang' brjatsat ${ }^{j}$ 'to clang'

The other unpaired obstruents: Alternations

Relics of the Second Palatalization pair velars with dentals:

	$\left[\begin{array}{l}\text { +compact } \\ \text { +low tonality }\end{array}\right] \sim\left[\begin{array}{l}\text {-compact } \\ \text {-low tonality }\end{array}\right]$		
$[$-voiced $]$	$[-$ continuant $]$	k	\sim
$[+$ voiced $]$	\varnothing	$\mathrm{g}, \mathrm{g}^{\mathrm{j}}$	\sim

brjakat ${ }^{j}$ 'to let fall w/ a clang' brjatsat ${ }^{j}$ 'to clang'
voskliknut ${ }^{j}$ 'to exclaim' (pf.) vosklitsat ${ }^{j}$ 'to exclaim' (impf.)

The other unpaired obstruents: Alternations

Relics of the Second Palatalization pair velars with dentals:

	$\left[\begin{array}{l}\text { +compact } \\ \text { +low tonality }\end{array}\right] \sim\left[\begin{array}{l}\text {-compact } \\ \text {-low tonality }\end{array}\right]$		
$[$-voiced $]$	$[-$ continuant $]$	k	\sim
$[+$ voiced $]$	\varnothing	$\mathrm{g}, \mathrm{g}^{\mathrm{j}}$	\sim

brjakat	'to let fall w/ a clang'	brjatsat $^{\mathrm{j}}$	'to clang'
voskliknut	'to exclaim' (pf.)	vosklitsat tjagat'jsja	'to sue'

The other unpaired obstruents: Alternations

Relics of the Second Palatalization pair velars with dentals:
$\left.\begin{array}{lccc} & {\left[\begin{array}{l}\text { +compact } \\ \text { +low tonality }\end{array}\right]}\end{array}\right]\left[\begin{array}{l}\text {-compact } \\ \text {-low tonality }\end{array}\right]$

brjakat ${ }^{\text {j }}$	'to let fall w/ a clang'	brjatsat ${ }^{\text {j }}$	'to clang'
voskliknut ${ }^{\text {j }}$	'to exclaim' (pf.)	vosklitsat ${ }^{\text {j }}$	'to exclaim' (impf.)
tjagat ${ }^{\text {j }}$ ja	'to sue'	sostjazat ${ }^{\text {j }}$ ja	'to contend with'
knjag ${ }^{\text {j }}$ ija	'princess'	knjaž ${ }^{\text {j }}$	'prince'

The other unpaired obstruents: Alternations

Relics of the Second Palatalization pair velars with dentals:
$\left.\begin{array}{lccc} & {\left[\begin{array}{l}\text { +compact } \\ \text { +low tonality }\end{array}\right]}\end{array}\right]\left[\begin{array}{l}\text {-compact } \\ \text {-low tonality }\end{array}\right]$

brjakat ${ }^{\text {j }}$	'to let fall w/ a clang'	brjatsat ${ }^{\text {j }}$	'to clang'
voskliknut ${ }^{j}$	'to exclaim' (pf.)	vosklitsat ${ }^{j}$	'to exclaim' (impf.)
tjagat ${ }^{\text {sja }}$	'to sue'	sostjazat ${ }^{\text {j }}$ ja	'to contend with'
knjag ${ }^{\text {j }}$ j ${ }^{\text {a }}$	'princess'	knjaž ${ }^{\text {j }}$	'prince'

These alternations are not productive in Modern Russian, but they are consistent with the prediction that $/ \mathrm{z} \mathrm{z}^{\mathrm{j}} /$ are also unspecified for continuancy.

Elsewhere in Slavic

Other Slavic languages show similarly asymmetrical inventories, and similar phonological patterns:

Elsewhere in Slavic

Other Slavic languages show similarly asymmetrical inventories, and similar phonological patterns:

Serbian: /g/ has no continuant counterpart, and alternates with /3/ and with /z/. Radišić (2009) argues for a contrastive hierarchy that leaves /g/ unspecified for continuancy.

Elsewhere in Slavic

Other Slavic languages show similarly asymmetrical inventories, and similar phonological patterns:

Lower Sorbian: /g/ has no continuant counterpart.

Elsewhere in Slavic

Other Slavic languages show similarly asymmetrical inventories, and similar phonological patterns:

Lower Sorbian: /g/ has no continuant counterpart. Where /k/ alternates with /ts/ and /x/ with / //...

NOMINATIVE	DAtive	gloss
ruk-a	ruts-e	'hand'
mux-a	muf-e	'fly'

Elsewhere in Slavic

Other Slavic languages show similarly asymmetrical inventories, and similar phonological patterns:

Lower Sorbian: /g/ has no continuant counterpart. Where /k/ alternates with /ts/ and /x/ with / // $/ \ldots$

NOMINATIVE	DATIVE	GLOSS
ruk-a	ruts-e	'hand'
mux-a	muf-e	'fly'
nog-a	noz-e	'leg'
rozg-a	rozzz-e	'twig'

.../g/ becomes either /z/ or /dz/, whichever is phonotactically less marked (/dz/ after /z/; /z/ elsewhere).

Elsewhere in Slavic

Other Slavic languages show similarly asymmetrical inventories, and similar phonological patterns:

Ukrainian: Historical */g/ has become /h/, making its alternations with coronal continuants more transparent phonetically.

Elsewhere in Slavic

Other Slavic languages show similarly asymmetrical inventories, and similar phonological patterns:

Ukrainian: Historical */g/ has become /h/, making its alternations with coronal continuants more transparent phonetically. A new, marginally contrastive stop /g/ is emerging through borrowings.

Conclusions

- The Successive Division Algorithm is not deterministic.

Conclusions

- The Successive Division Algorithm is not deterministic.
- It does not stipulate the order of features, and so it cannot predict exactly which features will be active based on the inventory alone.

Conclusions

- The Successive Division Algorithm is not deterministic.
- It does not stipulate the order of features, and so it cannot predict exactly which features will be active based on the inventory alone.
- This makes it compatible with the proposition that features themselves are emergent (Mielke 2008), as discussed by Dresher (2014) and Cowper \& Hall (2014).

Conclusions

- The Successive Division Algorithm is not deterministic.
- It does not stipulate the order of features, and so it cannot predict exactly which features will be active based on the inventory alone.
- This makes it compatible with the proposition that features themselves are emergent (Mielke 2008), as discussed by Dresher (2014) and Cowper \& Hall (2014).
- But it does make predictions about how many features can be specified, and about trade-offs between potential specifications.

Conclusions

- The Successive Division Algorithm is not deterministic.
- It does not stipulate the order of features, and so it cannot predict exactly which features will be active based on the inventory alone.
- This makes it compatible with the proposition that features themselves are emergent (Mielke 2008), as discussed by Dresher (2014) and Cowper \& Hall (2014).
- But it does make predictions about how many features can be specified, and about trade-offs between potential specifications.
- These predictions are, in principle, falsifiable.

Conclusions

- The Successive Division Algorithm is not deterministic.
- It does not stipulate the order of features, and so it cannot predict exactly which features will be active based on the inventory alone.
- This makes it compatible with the proposition that features themselves are emergent (Mielke 2008), as discussed by Dresher (2014) and Cowper \& Hall (2014).
- But it does make predictions about how many features can be specified, and about trade-offs between potential specifications.
- These predictions are, in principle, falsifiable.
- As regards voicing and continuancy in Slavic, though, it appears that they are not actually false.

References I

Blaho, Sylvia (2008). The syntax of phonology: A radically substance-free approach. PhD dissertation, Universitetet i Tromsø.
Calabrese, Andrea (1995). A constraint-based theory of phonological markedness and simplification procedures. Linguistic Inquiry 26:3. 373-463.
Cowper, Elizabeth \& Daniel Currie Hall (2014). Reductiō ad discrīmen: Where features come from. Nordlyd 41:2. 145-164.
Dresher, B. Elan (2009). The contrastive hierarchy in phonology. Cambridge: Cambridge University Press.
Dresher, B. Elan (2011). The phoneme. In Marc van Oostendorp, Colin J. Ewen, Elizabeth Hume \& Keren Rice (eds.) The Blackwell companion to phonology, volume 1. Oxford: Wiley-Blackwell, 241-266.
Dresher, B. Elan (2014). The arch not the stones: Universal feature theory without universal features. Nordlyd 41:2. 165-181.
Dresher, B. Elan (2015). The motivation for contrastive feature hierarchies in phonology. Linguistic Variation 15:1. 1-40.

References II

Hall, Daniel Currie (2007). The role and representation of contrast in phonological theory. PhD dissertation, University of Toronto.
Hall, Daniel Currie (forthcoming). Contrastive specification in phonology. In Mark Aronoff (ed.) Oxford research encyclopedia of linguistics. Oxford: OUP.

Halle, Morris (1957). On the phonetic rules of Russian. Presented to the Linguistic Society of America, Chicago, 1957.
Halle, Morris (1959). The sound pattern of Russian: A linguistic and acoustical investigation. The Hague: Mouton.
de Lacy, Paul (2010). Review of Dresher (2009). Phonology 27:3. 532-536.
Lightner, Theodore (1965). Segmental phonology of Modern Standard Russian. PhD dissertation, Massachusetts Institute of Technology.
Mielke, Jeff (2008). The emergence of distinctive features. Oxford: Oxford University Press.
Nevins, Andrew Ira (2015). Triumphs and limits of the contrastivity-only hypothesis. Linguistic Variation 15:1. 41-68.

References III

Padgett, Jaye (2002). Russian voicing assimilation, final devoicing, and the problem of [v] (or, the mouse that squeaked). Ms., University of California, Santa Cruz. ROA \#528.
Radišić, Milica (2009). The double nature of the velar /g/ in Serbian. Toronto Working Papers in Linguistics 30. 91-103.
Schaarschmidt, Gunter (1998). The historical phonology of the Upper and Lower Sorbian languages. Heidelberg: C. Winter.
Shevelov, George Y. (1977). On the chronology of h and the new g in Ukrainian. Harvard Ukrainian Studies 1:2. 137-152.

Timberlake, Alan (2002). Russian. In Bernard Comrie \& Greville G. Corbett (eds.) The Slavonic languages, first paperback edition. London: Routledge, 827-886.

